Description
You are given an integer array of unique positive integers nums
. Consider the following graph:
- There are
nums.length
nodes, labelednums[0]
tonums[nums.length - 1]
, - There is an undirected edge between
nums[i]
andnums[j]
ifnums[i]
andnums[j]
share a common factor greater than1
.
Return the size of the largest connected component in the graph.
Example 1:
Input: nums = [4,6,15,35] Output: 4
Example 2:
Input: nums = [20,50,9,63] Output: 2
Example 3:
Input: nums = [2,3,6,7,4,12,21,39] Output: 8
Constraints:
1 <= nums.length <= 2 * 104
1 <= nums[i] <= 105
- All the values of
nums
are unique.
Code
Union and Find
Time Complexity: , Space Complexity:
class Solution {
unordered_map<int, int> f;
unordered_map<int, int> s;
public:
int largestComponentSize(vector<int>& nums) {
for(int i = 0; i < nums.size(); i++) {
for(int k = 2; k <= sqrt(nums[i]); k++) {
if(nums[i] % k == 0) {
uni(nums[i], k);
uni(nums[i], nums[i] / k);
}
}
}
unordered_map<int, int> count;
int res = 1;
for(int i = 0; i < nums.size(); i++) {
res = max(res, ++count[find(nums[i])]);
}
return res;
}
int find(int x) {
if(!f.count(x)) {
f[x] = x;
s[x] = 1;
}
if(f[x] != x) {
f[x] = find(f[x]);
}
return f[x];
}
void uni(int x, int y) {
x = find(x), y = find(y);
if(x != y) {
if(s[x] > s[y]) {
f[y] = x;
s[x] += s[y];
}
else {
f[x] = y;
s[y] += s[x];
}
}
}
};