Description
You are given a binary string s
.
Return the number of
substrings
with dominant ones.
A string has dominant ones if the number of ones in the string is greater than or equal to the square of the number of zeros in the string.
Example 1:
Input: s = “00011”
Output: 5
Explanation:
The substrings with dominant ones are shown in the table below.
i | j | s[i..j] | Number of Zeros | Number of Ones |
---|---|---|---|---|
3 | 3 | 1 | 0 | 1 |
4 | 4 | 1 | 0 | 1 |
2 | 3 | 01 | 1 | 1 |
3 | 4 | 11 | 0 | 2 |
2 | 4 | 011 | 1 | 2 |
Example 2:
Input: s = “101101”
Output: 16
Explanation:
The substrings with non-dominant ones are shown in the table below.
Since there are 21 substrings total and 5 of them have non-dominant ones, it follows that there are 16 substrings with dominant ones.
i | j | s[i..j] | Number of Zeros | Number of Ones |
---|---|---|---|---|
1 | 1 | 0 | 1 | 0 |
4 | 4 | 0 | 1 | 0 |
1 | 4 | 0110 | 2 | 2 |
0 | 4 | 10110 | 2 | 3 |
1 | 5 | 01101 | 2 | 3 |
Constraints:
1 <= s.length <= 4 * 104
s
consists only of characters'0'
and'1'
.
Code
Prefix Sum - TLE
Time Complexity: , Space Complexity:
class Solution {
public:
int numberOfSubstrings(string s) {
int n = s.length();
vector<int> pre_1(n + 1, 0);
vector<int> pre_0(n + 1, 0);
for(int i = 0; i < s.length(); i++) {
if(s[i] == '0') {
pre_0[i + 1]++;
} else {
pre_1[i + 1]++;
}
pre_0[i + 1] += pre_0[i];
pre_1[i + 1] += pre_1[i];
}
int res = 0;
for(int i = 0; i < n; i++) {
for(int j = i; j < n; j++) {
int ones = pre_1[j + 1] - pre_1[i];
int zeros = pre_0[j + 1] - pre_0[i];
int zeroPower = zeros * zeros;
// pruning
int potential_ones = (n - j);
if(ones + potential_ones < zeroPower)
break;
if(ones >= zeroPower)
res++;
}
}
return res;
}
};
Prefix Sum with better pruning
Time Complexity: , Space Complexity:
class Solution {
public:
int numberOfSubstrings(string s) {
int n = s.length();
vector<int> pre(n + 1, 0);
for(int i = 0; i < s.length(); i++) {
pre[i + 1] = pre[i + 1] + pre[i] + (s[i] == '1' ? 1 : 0);
}
int res = 0;
for(int i = 0; i < n; i++) {
for(int j = i; j < n; j++) {
int ones = pre[j + 1] - pre[i];
int zeros = j - i + 1 - ones;
// early stop
int potential_ones = (n - j);
if(ones + potential_ones < zeros * zeros)
break;
if(zeros * zeros > ones) {
// jump foward, we need at least (zeros * zeros) - one more ones
// and since we're in a for loop, j++ at the end, so -1
j += ((zeros * zeros) - ones - 1);
} else {
// we have enough ones
res++;
int zeroMax = sqrt(ones);
if(zeroMax > zeros) {
res += (j + (zeroMax - zeros)) >= n ? (n - j - 1) : (zeroMax - zeros);
j += (zeroMax - zeros);
}
}
}
}
return res;
}
};
Sliding Window
Time Complexity: , Space Complexity: