Description
Given an integer n
, return all the structurally unique **BST’**s (binary search trees), which has exactly n
nodes of unique values from 1
to n
. Return the answer in any order .
Example 1:
Input: n = 3
Output: [[1,null,2,null,3],[1,null,3,2],[2,1,3],[3,1,null,null,2],[3,2,null,1]]
Example 2:
Input: n = 1
Output: 1
Constraints:
Code
time complexity 就是 Catalan Numbers 。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector < TreeNode * > generateTrees ( int n ) {
return buildTree ( 1 , n);
}
vector < TreeNode * > buildTree ( int start , int end ) {
vector < TreeNode *> ans;
// If start > end, then subtree will be empty so add NULL in the ans and return it.
if (start > end) {
ans. push_back ( NULL );
return ans;
}
// Iterate through all values from start to end to construct left and right subtree recursively
for ( int i = start; i <= end; ++ i) {
vector < TreeNode *> leftSubTree = buildTree (start, i - 1 ); // Construct left subtree
vector < TreeNode *> rightSubTree = buildTree (i + 1 , end); // Construct right subtree
// loop through all left and right subtrees and connect them to ith root
for ( int j = 0 ; j < leftSubTree. size (); j ++ ) {
for ( int k = 0 ; k < rightSubTree. size (); k ++ ) {
TreeNode * root = new TreeNode (i); // Create root with value i
root->left = leftSubTree[j]; // Connect left subtree rooted at leftSubTree[j]
root->right = rightSubTree[k]; // Connect right subtree rooted at rightSubTree[k]
ans. push_back (root); // Add this tree(rooted at i) to ans data-structure
}
}
}
return ans;
}
};
Source