Description

Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1’s in the binary representation of i.

Example 1:

Input: n = 2 Output: [0,1,1] Explanation: 0 0 1 1 2 10

Example 2:

Input: n = 5 Output: [0,1,1,2,1,2] Explanation: 0 0 1 1 2 10 3 11 4 100 5 101

Constraints:

  • 0 <= n <= 105

Follow up:

  • It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
  • Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?

Code

DP

Time Complexity: , Space Complexity:

由基本加法與乘法可知,奇數會是前面的偶數 + 1,而偶數會是由乘上 2 而來,而乘上 2 用 bit 來看就是往左 shift 一位而已,因此 1 bit 的數量會和自己的一半的數字擁有的 1 bit 數量一樣。

用 C 寫時要注意 returnSize,概念是在 C function 中傳遞 array 時,必須要明確 specify array size,因為 array name 即是 pointer to the first element of the array。

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* countBits(int n, int* returnSize) {
    int* res = malloc(sizeof(int) * (n + 1));
    res[0] = 0;
    for(int i = 1; i < n + 1; i++) {
        if(i % 2 == 0)
            res[i] = res[i / 2];
        else
            res[i] = res[i / 2] + 1;
    }
    *returnSize = n + 1;
    return res;
}
class Solution {
public:
    vector<int> countBits(int n) {
        if(n == 0) return {0};
        if(n == 1) return {0, 1};
        if(n == 2) return {0, 1, 1};
        vector<int> answer(n+1, 0);
        answer[0] = 0;
        answer[1] = 1;
        answer[2] = 1;
        for(int i = 3; i <= n; i++) {
            answer[i] = i % 2 == 0? answer[i/2] : answer[i-1] + 1;
        }
 
        return answer;
    }
};

Source