Description
You are given an integer array nums
and two integers minK
and maxK
.
A fixed-bound subarray of nums
is a subarray that satisfies the following conditions:
- The minimum value in the subarray is equal to
minK
. - The maximum value in the subarray is equal to
maxK
.
Return the number of fixed-bound subarrays.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1,3,5,2,7,5], minK = 1, maxK = 5 Output: 2 Explanation: The fixed-bound subarrays are [1,3,5] and [1,3,5,2].
Example 2:
Input: nums = [1,1,1,1], minK = 1, maxK = 1 Output: 10 Explanation: Every subarray of nums is a fixed-bound subarray. There are 10 possible subarrays.
Constraints:
2 <= nums.length <= 105
1 <= nums[i], minK, maxK <= 106
Code
一開始我覺得這題和 Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit 很像。
後來看了解答發現不需要這麼麻煩,只需要單純的 two pointer 就行了。
1. start , minFound ... maxFound
2. start , maxFound ... minFound
3. start ..., ..... min/max Found
1.2. 兩種情況的 subarray 個數都是 + 1,而 3. 代表 min max 重疊的狀況,例如 1111,因此要用 min(minFound, maxFound) - start 來計算。
Time Complexity: , Space Complexity:
class Solution {
public:
long long countSubarrays(vector<int>& nums, int minK, int maxK) {
long long res = 0, start = -1, minFound = -1, maxFound = -1;
for(int i = 0; i < nums.size(); i++) {
if(nums[i] == minK) minFound = i;
if(nums[i] == maxK) maxFound = i;
if(nums[i] < minK || nums[i] > maxK) start = i;
res += max(0ll, min(minFound, maxFound) - start);
}
return res;
}
};
class Solution {
public:
long long countSubarrays(vector<int>& nums, int minK, int maxK) {
long res = 0;
bool minFound = false, maxFound = false;
int start = 0, minStart = 0, maxStart = 0;
for (int i = 0; i < nums.size(); i++) {
int num = nums[i];
if (num < minK || num > maxK) {
minFound = false;
maxFound = false;
start = i+1;
}
if (num == minK) {
minFound = true;
minStart = i;
}
if (num == maxK) {
maxFound = true;
maxStart = i;
}
if (minFound && maxFound) {
res += (min(minStart, maxStart) - start + 1);
}
}
return res;
}
};