Description
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1
Example 3:
Input: nums = [1], target = 0 Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
- All values of
nums
are unique. nums
is an ascending array that is possibly rotated.-104 <= target <= 104
Code
Time Complexity: , Space Complexity:
重點在於決定 l = m + 1
的條件(因為 int m = l + (r - l) / 2;
算出來的 middle 會偏左)。
找尋偏移量:if(nums[mid] > nums[r])
關鍵都在於 nums[m]
, nums[r]
之間的關係,以及必定會有兩段 sorted array。
以 0, 1, 2, 4, 5, 6, 7
為例子:
可看出若用 nums[m]
是否小於 nums[r]
去判斷,可以將所有 cases 分成兩部分。m < r
的 0
在左半邊,所以要 r = m
;而 m > r
的 0
在右半邊,所以要 l = m + 1
。
這會比使用 nums[l], nums[m]
之間的關係去判斷要來的簡單,因為用 l < m
or l > m
會出現三種 cases(如下圖)。
l mid r
0, 1, 2, 4, 5, 6, 7 l < m < r
7, 0, 1, 2, 4, 5, 6 l > m < r
6, 7, 0, 1, 2, 4, 5 l > m < r
5, 6, 7, 0, 1, 2, 4 l > m < r
4, 5, 6, 7, 0, 1, 2 l < m > r
2, 4, 5, 6, 7, 0, 1 l < m > r
1, 2, 4, 5, 6, 7, 0 l < m > r