Description
Alice and Bob continue their games with piles of stones. There are a number of piles arranged in a row, and each pile has a positive integer number of stones piles[i]
. The objective of the game is to end with the most stones.
Alice and Bob take turns, with Alice starting first. Initially, M = 1
.
On each player’s turn, that player can take all the stones in the first X
remaining piles, where 1 <= X <= 2M
. Then, we set M = max(M, X)
.
The game continues until all the stones have been taken.
Assuming Alice and Bob play optimally, return the maximum number of stones Alice can get.
Example 1:
Input: piles = [2,7,9,4,4] Output: 10 Explanation: If Alice takes one pile at the beginning, Bob takes two piles, then Alice takes 2 piles again. Alice can get 2 + 4 + 4 = 10 piles in total. If Alice takes two piles at the beginning, then Bob can take all three piles left. In this case, Alice get 2 + 7 = 9 piles in total. So we return 10 since it’s larger.
Example 2:
Input: piles = [1,2,3,4,5,100] Output: 104
Constraints:
1 <= piles.length <= 100
1 <= piles[i] <= 104
Code
Time Complexity: , Space Complexity:
關鍵在於定義 play
的回傳值到底是什麼。
定義為自己的 turn 所拿的,以及對手拿完後的 index 之後的 prefix sum,再減掉對手的 play
的回傳。
原本卡住的點是要怎麼紀錄對手拿到多少,然後再開始自己的遞迴(alice 要 call alice 自己的遞迴,bob call bob 的),有點類似 minimax 的味道,但這裡正解是 alice call bob 的,bob 會 call alice 。
class Solution {
public:
int stoneGameII(vector<int>& piles) {
vector<int> pre = piles;
vector<vector<int>> memo(101, vector<int>(202, -1));
for(int i = pre.size() - 2; i >= 0; i--) {
pre[i] += pre[i + 1];
}
return play(piles, 0, 1, pre, memo);
}
int play(vector<int>& piles, int idx, int M, vector<int>& pre, vector<vector<int>>& memo) {
if(idx + 2 * M >= pre.size()) {
// takes all
return pre[idx];
}
if(memo[idx][M] != -1)
return memo[idx][M];
int res = 0;
int curStone = 0;
for(int i = 1; i <= 2 * M; i++) {
curStone = pre[idx] - pre[idx + i];
res = max(res, curStone + pre[idx + i] - play(piles, idx + i, max(M, i), pre, memo));
}
memo[idx][M] = res;
return res;
}
};