Description
You are given a 0-indexed integer array nums
. A subarray of nums
is called continuous if:
- Let
i
,i + 1
, …,j
be the indices in the subarray. Then, for each pair of indicesi <= i1, i2 <= j
,0 <= |nums[i1] - nums[i2]| <= 2
.
Return the total number of continuous subarrays.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [5,4,2,4] Output: 8 Explanation: Continuous subarray of size 1: [5], [4], [2], [4]. Continuous subarray of size 2: [5,4], [4,2], [2,4]. Continuous subarray of size 3: [4,2,4]. Thereare no subarrys of size 4. Total continuous subarrays = 4 + 3 + 1 = 8. It can be shown that there are no more continuous subarrays.
Example 2:
Input: nums = [1,2,3] Output: 6 Explanation: Continuous subarray of size 1: [1], [2], [3]. Continuous subarray of size 2: [1,2], [2,3]. Continuous subarray of size 3: [1,2,3]. Total continuous subarrays = 3 + 2 + 1 = 6.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Code
Time Complexity: , Space Complexity:
這題和 Longest Continuous Subarray With Absolute Diff Less Than or Equal to Limit 很像。
j - i + 1
的原理和 Binary Subarrays With Sum 中提到的一樣,今天找到一個 j 使 sliding window 為 valid window 時,不管前面的 i 怎麼移動,都是 j 使得新的 sub array 得以產生。
以 [5, 4, 2]
為例:一開始先找到 [5]
,然後找到 [5, 4]
,這時,4
可以使得 [5, 4], [4]
兩個新的 subarray 產生,而 [5]
在上一步就考慮過了,不需要計入這次的累加中,所以新的 subarray 數量就是 j - i + 1 = 2
。