Description

Given the root of a binary tree, determine if it is a valid binary search tree (BST).

A valid BST is defined as follows:

  • The left

    subtree

    of a node contains only nodes with keys less than the node’s key.

  • The right subtree of a node contains only nodes with keys greater than the node’s key.

  • Both the left and right subtrees must also be binary search trees.

Example 1:

Input: root = [2,1,3] Output: true

Example 2:

Input: root = [5,1,4,null,null,3,6] Output: false Explanation: The root node’s value is 5 but its right child’s value is 4.

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • -231 <= Node.val <= 231 - 1

Code

Beware of the constraints, use long instead of int.

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        return helper(root, LONG_MIN, LONG_MAX);
    }
 
    bool helper(TreeNode* node, long left_bound, long right_bound) {
        if(!node) return true;
        if(node->val <= left_bound || node->val >= right_bound) return false;
        return helper(node->left, left_bound, node->val) && helper(node->right, node->val, right_bound);
    }
};
 

也可以使用 Binary Tree Inorder Traversal,在 traversal 中途判斷是否合理。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    bool isValidBST(TreeNode* root) {
        stack<TreeNode*> st;
        TreeNode* prev = nullptr;
        while(root || !st.empty()) {
            if(root) {
                st.push(root);
                root = root->left;
            } else {
                root = st.top(); st.pop();
                if(prev && (prev->val >= root->val)) return false;
                prev = root;
                root = root->right;
            }
        }
        return true;
    }
};

Source