Description
You are given two integer arrays nums1
and nums2
sorted in non-decreasing order and an integer k
.
Define a pair (u, v)
which consists of one element from the first array and one element from the second array.
Return the k
pairs (u1, v1), (u2, v2), ..., (uk, vk)
with the smallest sums.
Example 1:
Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3 Output: [[1,2],[1,4],[1,6]] Explanation: The first 3 pairs are returned from the sequence: [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2 Output: [[1,1],[1,1]] Explanation: The first 2 pairs are returned from the sequence: [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Constraints:
1 <= nums1.length, nums2.length <= 105
-109 <= nums1[i], nums2[i] <= 109
nums1
andnums2
both are sorted in non-decreasing order.1 <= k <= 104
k <= nums1.length * nums2.length
Code
Time Complexity: , Space Complexity:
類似 k-way merge 的概念。對於 [a, b, c], [d, e, f]
來說,先把 [a, b, c]
和 [d]
配,然後 pop 出來的 [a, d]
,因為 a
固定了,所以一定必須把 [a, e]
push 進去(下一個順位)。
class Solution {
public:
vector<vector<int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
auto cmp = [&](const pair<int, int>& p1, const pair<int, int>& p2){
return nums1[p1.first] + nums2[p1.second] > nums1[p2.first] + nums2[p2.second];
};
// min heap
priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(cmp)> pq(cmp);
for(int i = 0; i < nums1.size(); i++) {
pq.push({i, 0});
}
vector<vector<int>> res;
while(k-- && !pq.empty()) {
auto P = pq.top();
pq.pop();
res.push_back({nums1[P.first], nums2[P.second]});
if(P.second == nums2.size() - 1)
continue;
pq.push({P.first, P.second + 1});
}
return res;
}
};