Description
Find all valid combinations of k
numbers that sum up to n
such that the following conditions are true:
- Only numbers
1
through9
are used. - Each number is used at most once.
Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.
Example 1:
Input: k = 3, n = 7 Output: 1,2,4 Explanation: 1 + 2 + 4 = 7 There are no other valid combinations.
Example 2:
Input: k = 3, n = 9 Output: [[1,2,6],[1,3,5],[2,3,4]] Explanation: 1 + 2 + 6 = 9 1 + 3 + 5 = 9 2 + 3 + 4 = 9 There are no other valid combinations.
Example 3:
Input: k = 4, n = 1 Output: [] Explanation: There are no valid combinations. Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
Constraints:
2 <= k <= 9
1 <= n <= 60
Code
結合 Combination Sum II 以及 Combinations 的概念。
class Solution {
public:
vector<vector<int>> combinationSum3(int k, int n) {
vector<vector<int>> answer;
vector<int> curr;
vector<int> candidates = {1, 2, 3, 4, 5, 6, 7, 8, 9};
helper(answer, candidates, curr, 0, 0, n, k);
return answer;
}
void helper(vector<vector<int>> &answer, vector<int> &candidates, vector<int> curr, int currSum, int start, int target, int k) {
if(currSum > target || curr.size() > k) return;
if(currSum == target && curr.size() == k) {
answer.push_back(curr);
return;
}
for(int i = start; i < candidates.size(); i++) {
currSum += candidates[i];
curr.push_back(candidates[i]);
// set start to i + 1, since elements cannot be reuse
helper(answer, candidates, curr, currSum, i + 1, target, k);
currSum -= candidates[i];
curr.pop_back();
}
}
};