Description

Given an integer array nums, find a

subarray

that has the largest product, and return the product.

The test cases are generated so that the answer will fit in a 32-bit integer.

Example 1:

Input: nums = [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6.

Example 2:

Input: nums = [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

Constraints:

  • 1 <= nums.length <= 2 * 104
  • -10 <= nums[i] <= 10
  • The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.

Code

Maximum Subarray 的變形,由左到右以及由右到左各做一次 Kadane Algorithm(Maximum Subarray Problem)

假設由左到右,一路乘下去,只遇到一個負的,那最大值就會是由右往左然後停在負的那個數字前面。如果有兩個負的,負負得正。因此做兩次 kadane algorithm 就可以得到最佳解。

class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int pos = nums[0], neg = nums[0], res = nums[0];
        for(int i = 1; i < nums.size(); i++) {
            int new_pos, new_neg;
            if(nums[i] >= 0) {
                new_pos = max(pos * nums[i], nums[i]);
                new_neg = min(neg * nums[i], nums[i]);
            } else if(nums[i] < 0) {
                new_pos = max(neg * nums[i], nums[i]);
                new_neg = min(pos * nums[i], nums[i]);
            } 
            pos = new_pos;
            neg = new_neg;
            res = max(res, pos);
        }
        return res;
    }
};
class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int positive = nums[0];
        int negative = nums[0];
        int maxP = nums[0];
 
        for(int i = 1; i < nums.size(); i++) {
            if(nums[i] < 0) swap(positive, negative);
 
            positive = max(nums[i], positive * nums[i]);
            negative = min(nums[i], negative * nums[i]);
 
            maxP = max(maxP, positive);
        }
 
        return maxP;
    }
};

Source