Description
Given an integer array nums
, find a
subarray
that has the largest product, and return the product.
The test cases are generated so that the answer will fit in a 32-bit integer.
Example 1:
Input: nums = [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6.
Example 2:
Input: nums = [-2,0,-1] Output: 0 Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Constraints:
1 <= nums.length <= 2 * 104
-10 <= nums[i] <= 10
- The product of any prefix or suffix of
nums
is guaranteed to fit in a 32-bit integer.
Code
Maximum Subarray 的變形,由左到右以及由右到左各做一次 Kadane Algorithm(Maximum Subarray Problem)。
假設由左到右,一路乘下去,只遇到一個負的,那最大值就會是由右往左然後停在負的那個數字前面。如果有兩個負的,負負得正。因此做兩次 kadane algorithm 就可以得到最佳解。
class Solution {
public:
int maxProduct(vector<int>& nums) {
int pos = nums[0], neg = nums[0], res = nums[0];
for(int i = 1; i < nums.size(); i++) {
int new_pos, new_neg;
if(nums[i] >= 0) {
new_pos = max(pos * nums[i], nums[i]);
new_neg = min(neg * nums[i], nums[i]);
} else if(nums[i] < 0) {
new_pos = max(neg * nums[i], nums[i]);
new_neg = min(pos * nums[i], nums[i]);
}
pos = new_pos;
neg = new_neg;
res = max(res, pos);
}
return res;
}
};
class Solution {
public:
int maxProduct(vector<int>& nums) {
int positive = nums[0];
int negative = nums[0];
int maxP = nums[0];
for(int i = 1; i < nums.size(); i++) {
if(nums[i] < 0) swap(positive, negative);
positive = max(nums[i], positive * nums[i]);
negative = min(nums[i], negative * nums[i]);
maxP = max(maxP, positive);
}
return maxP;
}
};