Description

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.

  • For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.

Return true if you can finish all courses. Otherwise, return false.

Example 1:

Input: numCourses = 2, prerequisites = 1,0 Output: true Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: numCourses = 2, prerequisites = [[1,0],[0,1]] Output: false Explanation: There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Constraints:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • All the pairs prerequisites[i] are unique.

Code

DFS

經典使用 DFS 進行 cycle detection,使用三種顏色 0, 1, 20 代表尚未開始 DFS,1 代表該 node 正在進行 DFS,處在 DFS 的 recursive stack 當中, 因此若在 DFS 的遞迴過程中發現 visit 的 node 顏色為 1 代表有 cycle。2 代表 recursion call 已經全部結束。

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<vector<int>> adj(numCourses);
        for(auto req: prerequisites) {
            adj[req[0]].push_back(req[1]);
        }
 
        vector<int> visited(numCourses, 0);
        for(int i = 0; i < numCourses; i++) {
            if(visited[i] == 0) {
                if (!dfs(i, adj, visited)) return false;
            }
        }
 
        return true;
    }
 
    bool dfs(int node, vector<vector<int>>& adj, vector<int>& visited) {
        if(visited[node] == 1) return false;
        if(visited[node] == 2) return true;
        visited[node] = 1;
        for(int i = 0; i < adj[node].size(); i++) {
            if(!dfs(adj[node][i], adj, visited)) return false;
        }
 
        visited[node] = 2;
        return true;
    }
};

Topological Sort

要 detect cycle,及偵測 graph 是否為 DAG(direct acyclic graph),若為 DAG,代表沒有 cycle,而一個 graph 若具有 topological ordering,就是一個 DAG。

class Solution {
public:
    bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
        vector<vector<int>> adj(numCourses);
        vector<int> degree(numCourses, 0);
        for(auto req: prerequisites) {
            adj[req[1]].push_back(req[0]);
            degree[req[0]]++;
        }
 
        queue<int> q;
        for(int i = 0; i < degree.size(); i++) {
            if(degree[i] == 0) q.push(i);
        }   
        int n = numCourses;
        while(!q.empty()) {
            auto node = q.front();
            q.pop();
            n--;
            for(int i = 0; i < adj[node].size(); i++) {
                if(--degree[adj[node][i]] == 0) q.push(adj[node][i]);
            }
        }
 
        return n == 0;
    }
};

Source