Description
Given an array nums
of size n
, return the majority element.
The majority element is the element that appears more than ⌊n / 2⌋
times. You may assume that the majority element always exists in the array.
Example 1:
Input: nums = [3,2,3] Output: 3
Example 2:
Input: nums = [2,2,1,1,1,2,2] Output: 2
Constraints:
n == nums.length
1 <= n <= 5 * 104
-109 <= nums[i] <= 109
Follow-up: Could you solve the problem in linear time and in O(1)
space?
Code
hashmap
Time Complexity: , Space Complexity:
class Solution {
public:
int majorityElement(vector<int>& nums) {
map<int, int> m;
for(int i = 0; i < nums.size(); i++) {
m[nums[i]]++;
if( m[nums[i]] > floor(nums.size() / 2)) return nums[i];
}
return 0;
}
};
Sorting
Time Complexity: , Space Complexity: 因為 majority element 佔至少 1/2,因此排在 sort 過後的 nums 的 1/2 位置的 element 一定就是 majority element。
class Solution {
public:
int majorityElement(vector<int>& nums) {
nth_element(nums.begin(), nums.begin() + nums.size() / 2, nums.end());
return nums[nums.size() / 2];
}
};
Moore Voting Algorithm
Time Complexity: , Space Complexity: Moore Voting Algorithm 的精髓在於:刪去一個數列中的兩個不同的數字,不會影響該數列的majority element。
int majorityElement(int* nums, int numsSize) {
int majority;
int count = 0;
for(int i = 0; i < numsSize; i++) {
if(!count) majority = nums[i];
count += nums[i] == majority ? 1 : -1;
}
return majority;
}
class Solution {
public:
int majorityElement(vector<int>& nums) {
int count = 0, majority;
for(int num: nums) {
if(!count) majority = num;
count += num == majority? 1 : -1;
}
return majority;
}
};
bit manipulation
iterate 過 32 個 bit,使用 mask 查看該位置的 bit 被設為 1 的次數是否超過一半。
注意 left shift 時,注意 mask
要設成 unsigned int
。
int majorityElement(int* nums, int numsSize) {
int res = 0;
for(unsigned int j = 0, mask = 1; j < 32; j++, mask << 1) {
int count = 0;
for(int i = 0; i < numsSize; i++) {
if(nums[i] & mask) {
count++;
}
}
if(count > (numsSize / 2))
res |= mask;
}
return res;
}
class Solution {
public:
int majorityElement(vector<int>& nums) {
int majority = 0;
for(unsigned int i = 0, mask = 1; i < 32; mask <<= 1, i++) {
int bits = 0;
for(int num: nums) {
if(num & mask) {
bits++;
}
}
if(bits > nums.size() / 2) majority |= mask;
}
return majority;
}
};