Description
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Given an integer array nums
, return the sum of Hamming distances between all the pairs of the integers in nums
.
Example 1:
Input: nums = [4,14,2] Output: 6 Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just showing the four bits relevant in this case). The answer will be: HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.
Example 2:
Input: nums = [4,14,4] Output: 4
Constraints:
1 <= nums.length <= 104
0 <= nums[i] <= 109
- The answer for the given input will fit in a 32-bit integer.
Code
原本想直接用 for loop (k 是 each pair 中 XOR 後剩下的 bit 數) 套 Hamming Distance 的解解出所有 pair 的 hamming distance 的總和,但是這樣會 time limit exceed。
class Solution {
public:
int totalHammingDistance(vector<int>& nums) {
int res = 0;
for(int i = 0; i < nums.size(); i++) {
for(int j = i + 1; j < nums.size(); j++) {
res += calcHammingDistance(nums[i], nums[j]);
}
}
return res;
}
int calcHammingDistance(int x, int y) {
int n = x ^ y;
int dis = 0;
while(n) {
n = n & (n - 1);
dis++;
}
return dis;
}
};
改進的方法是觀察:
觀察每個 index 的 bit 的行為,當有一對 1, 0
時就會讓 total hamming distance 增加 1,因此要做的就是對於 n 個數字的每個 bit 都去找出有多少 1 和 0,將 1 的個數和 0 的個數相乘(成 pair)。
class Solution {
public:
int totalHammingDistance(vector<int>& nums) {
int dis = 0;
for(int j = 0; j < 32; j++) {
int zeros = 0;
int ones = 0;
for(int i = 0; i < nums.size(); i++) {
if(nums[i] & (1 << j)) ones++;
else zeros++;
}
dis += zeros * ones;
}
return dis;
}
};