Description

You are given a string s and an integer k. You can choose any character of the string and change it to any other uppercase English character. You can perform this operation at most k times.

Return the length of the longest substring containing the same letter you can get after performing the above operations.

Example 1:

Input: s = “ABAB”, k = 2 Output: 4 Explanation: Replace the two ‘A’s with two ‘B’s or vice versa.

Example 2:

Input: s = “AABABBA”, k = 1 Output: 4 Explanation: Replace the one ‘A’ in the middle with ‘B’ and form “AABBBBA”. The substring “BBBB” has the longest repeating letters, which is 4.

Constraints:

  • 1 <= s.length <= 105
  • s consists of only uppercase English letters.
  • 0 <= k <= s.length

Code

這題的 sliding window 在 shrink 時,不需要去確認 shrink 掉的 element 會不會影響下一個 iteration 的解,所以 if(end - start + 1 > maxCount + k) 不需要寫成 while(end - start + 1 > maxCount + k) 。(因為找到的解在滑動的過程中只會增加,不可能減少)

解不會大於 maxCount + k

class Solution {
public:
    int characterReplacement(string s, int k) {
        vector<int> count(26, 0);
        int maxCount = 0, maxLength = 0;
 
        for(int i = 0; i < s.length(); i++) {
            count[s[i] - 'A']++;
            maxCount = max(maxCount, count[s[i] - 'A']);
            if(maxLength < maxCount + k)
                maxLength++;
            else {
                count[s[i - maxLength] - 'A']--;
            }
        }
 
        return maxLength;
    }
};

關鍵在於 end - start + 1 - maxCount > k

end - start + 1 是目前 window大小,maxCount 是目前 window 中重複的 character,兩者相減就是需要替換的 character 的數量,而題目限制此數量不能大於 k,因此當大於 k 時就需要 shrink window。

Time Complexity: , Space Complexity:

class Solution {
public:
    int characterReplacement(string s, int k) {
        vector<int> count(26, 0);
        int start = 0, maxCount = 0, res = 0;
        for(int end = 0; end < s.length(); end++) {
            count[s[end] - 'A']++;
            maxCount = max(maxCount, count[s[end] - 'A']);
            if(end - start + 1 > maxCount + k) {
                count[s[start] - 'A']--;
                start++;
            }
            res = max(res, end - start + 1);
        }
 
        return res;
    }
};

Source