Description
You are given an integer array nums
and an integer target
.
You want to build an expression out of nums by adding one of the symbols '+'
and '-'
before each integer in nums and then concatenate all the integers.
- For example, if
nums = [2, 1]
, you can add a'+'
before2
and a'-'
before1
and concatenate them to build the expression"+2-1"
.
Return the number of different expressions that you can build, which evaluates to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 3 Output: 5 Explanation: There are 5 ways to assign symbols to make the sum of nums be target 3. -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3
Example 2:
Input: nums = [1], target = 1 Output: 1
Constraints:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
Code
DP with memoization
Time Complexity: , Space Complexity:
where is the length of nums
, and is the amount of possible current sum.
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int n = nums.size();
vector<unordered_map<int,int>> memo(nums.size());
return dfs(0, nums, 0, target, memo);
}
int dfs(int i, vector<int>& nums, int cur, int target, vector<unordered_map<int,int>>& memo) {
if(i == nums.size()) {
if(cur == target) return 1;
else return 0;
}
if(memo[i].find(cur) != memo[i].end()) return memo[i][cur];
int take_i = dfs(i + 1, nums, cur + nums[i], target, memo);
int no_take_i = dfs(i + 1, nums, cur - nums[i], target, memo);
return memo[i][cur] = take_i + no_take_i;
}
};