Description
Given an integer array nums
, handle multiple queries of the following types:
- Update the value of an element in
nums
. - Calculate the sum of the elements of
nums
between indicesleft
andright
inclusive whereleft <= right
.
Implement the NumArray
class:
NumArray(int[] nums)
Initializes the object with the integer arraynums
.void update(int index, int val)
Updates the value ofnums[index]
to beval
.int sumRange(int left, int right)
Returns the sum of the elements ofnums
between indicesleft
andright
inclusive (i.e.nums[left] + nums[left + 1] + ... + nums[right]
).
Example 1:
<strong>Input</strong>
["NumArray", "sumRange", "update", "sumRange"]
[[[1, 3, 5]], [0, 2], [1, 2], [0, 2]]
<strong>Output</strong>
[null, 9, null, 8]
<strong>Explanation</strong>
NumArray numArray = new NumArray([1, 3, 5]);
numArray.sumRange(0, 2); // return 1 + 3 + 5 = 9
numArray.update(1, 2); // nums = [1, 2, 5]
numArray.sumRange(0, 2); // return 1 + 2 + 5 = 8
Constraints:
1 <= nums.length <= 3 * 10<sup>4</sup>
-100 <= nums[i] <= 100
0 <= index < nums.length
-100 <= val <= 100
0 <= left <= right < nums.length
- At most
3 * 10<sup>4</sup>
calls will be made toupdate
andsumRange
.
Code
Time Complexity: , Space Complexity:
segment tree 背後的精神是 divide and conquer。
用原本的 array 的 left right mid 去做 divide and conquer,而 index parameter 是 for segment tree array 使用的,更新方式是 left child = 2 index + 1, right child = 2 index + 2(zero based)。