Description
A k
-booking happens when k
events have some non-empty intersection (i.e., there is some time that is common to all k
events.)
You are given some events [startTime, endTime)
, after each given event, return an integer k
representing the maximum k
-booking between all the previous events.
Implement the MyCalendarThree
class:
MyCalendarThree()
Initializes the object.int book(int startTime, int endTime)
Returns an integerk
representing the largest integer such that there exists ak
-booking in the calendar.
Example 1:
Input [“MyCalendarThree”, “book”, “book”, “book”, “book”, “book”, “book”] [[], [10, 20], [50, 60], [10, 40], [5, 15], [5, 10], [25, 55]] Output [null, 1, 1, 2, 3, 3, 3]
Explanation MyCalendarThree myCalendarThree = new MyCalendarThree(); myCalendarThree.book(10, 20); // return 1 myCalendarThree.book(50, 60); // return 1 myCalendarThree.book(10, 40); // return 2 myCalendarThree.book(5, 15); // return 3 myCalendarThree.book(5, 10); // return 3 myCalendarThree.book(25, 55); // return 3
Constraints:
0 <= startTime < endTime <= 109
- At most
400
calls will be made tobook
.
Code
這題只是 My Calendar II 的 generalization 而已。一樣使用 difference array 來解題。
Time Complexity: , Space Complexity: