Description

You are given a 0-indexed integer array nums, and you are allowed to traverse between its indices. You can traverse between index i and index j, i != j, if and only if gcd(nums[i], nums[j]) > 1, where gcd is the greatest common divisor.

Your task is to determine if for every pair of indices i and j in nums, where i < j, there exists a sequence of traversals that can take us from i to j.

Return true if it is possible to traverse between all such pairs of indices, or false otherwise.

Example 1:

Input: nums = [2,3,6] Output: true Explanation: In this example, there are 3 possible pairs of indices: (0, 1), (0, 2), and (1, 2). To go from index 0 to index 1, we can use the sequence of traversals 0 2 1, where we move from index 0 to index 2 because gcd(nums[0], nums[2]) = gcd(2, 6) = 2 > 1, and then move from index 2 to index 1 because gcd(nums[2], nums[1]) = gcd(6, 3) = 3 > 1. To go from index 0 to index 2, we can just go directly because gcd(nums[0], nums[2]) = gcd(2, 6) = 2 > 1. Likewise, to go from index 1 to index 2, we can just go directly because gcd(nums[1], nums[2]) = gcd(3, 6) = 3 > 1.

Example 2:

Input: nums = [3,9,5] Output: false Explanation: No sequence of traversals can take us from index 0 to index 2 in this example. So, we return false.

Example 3:

Input: nums = [4,3,12,8] Output: true Explanation: There are 6 possible pairs of indices to traverse between: (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), and (2, 3). A valid sequence of traversals exists for each pair, so we return true.

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

Code

Largest Component Size by Common Factor 幾乎一模一樣,因為用 時間去對每個 pair 都算算看他們的 gcd 會太慢,使用 prime factorization 只需要

要注意 edge case,因為 1 對其他數來說,gcd 都必定是 1,當 input 只由 1 構成時,若 input = [1] 上述的演算法可以處理,因為 1 會是一座孤島,但是若 input 有大於等於兩個 1 ,就必須回傳 false。

若 input 除了 1 還有其他數字,就不需要特別處理了,同理,因爲 1 會是一座孤島。

Time Complexity: , Space Complexity:

class Solution {
public:
    unordered_map<int, int> f;
    unordered_map<int, int> s;
    
    bool canTraverseAllPairs(vector<int>& nums) {
        int n = nums.size();
 
        int one_counter = 0; // edge case
        for(int i = 0; i < n; i++) {
            if(nums[i] == 1) one_counter++;
            if(one_counter >= 2) return false;
            
            for(int k = 2; k * k <= nums[i]; k++) {
                if(nums[i] % k == 0) {
                    uni(nums[i], k);
                    uni(nums[i], nums[i] / k);
                }
            }
        }
        
        unordered_set<int> st;
        for(int i = 0; i < n; i++) {
            st.insert(find(nums[i]));
            if(st.size() >= 2) return false;
        }
 
        return true;
 
    }
 
    int find(int x) {
        if(!f.count(x)) {
            f[x] = x;
            s[x] = 1;
        }
        if(f[x] != x) {
            f[x] = find(f[x]);
        }
        return f[x];
    }
 
    void uni(int x, int y) {
        x = find(x), y = find(y);
        if(x != y) {
            if(s[x] > s[y]) {
                f[y] = x;
                s[x] += s[y];
            } 
            else {
                f[x] = y;
                s[y] += s[x];
            }
        }
    }
};

Source