Description
Given a m * n
matrix of ones and zeros, return how many square submatrices have all ones.
Example 1:
Input: matrix = [ [0,1,1,1], [1,1,1,1], [0,1,1,1] ] Output: 15 Explanation: There are 10 squares of side 1. There are 4 squares of side 2. There is 1 square of side 3. Total number of squares = 10 + 4 + 1 = 15.
Example 2:
Input: matrix =
[
[1,0,1],
[1,1,0],
[1,1,0]
]
Output: 7
Explanation:
There are 6 squares of side 1.
There is 1 square of side 2.
Total number of squares = 6 + 1 = 7.
Constraints:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
Code
Thinking Process:
- 當 iterate 到
matrix[i][j]
時,如果他本身是 1,就可以組成一個 1 x 1 的正方格,而要判斷它是否可以組成一個 size > 1 都是 1 的正方格,就要看他左邊右邊左斜上方的三個格子 dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
- 當
dp[i][j] = n
,代表這格可以組成 1 x 1、2 x 2、一路到 n x n 都是 1 的正方形,因此res += n
Time Complexity: , Space Complexity:
class Solution {
public:
int countSquares(vector<vector<int>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
int res = 0;
// base case
for(int i = 0; i < m; i++) {
dp[i][0] = matrix[i][0];
res += dp[i][0];
}
for(int j = 0; j < n; j++) {
dp[0][j] = matrix[0][j];
if (j != 0)
res += dp[0][j];
}
// dp: dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
if (matrix[i][j] == 1) {
dp[i][j] = min(dp[i - 1][j], min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
}
res += dp[i][j];
}
}
return res;
}
};