Mutex and Semaphore locking/mutex.c linux/mutex_types.h /* * Simple, straightforward mutexes with strict semantics: * * - only one task can hold the mutex at a time * - only the owner can unlock the mutex * - multiple unlocks are not permitted * - recursive locking is not permitted * - a mutex object must be initialized via the API * - a mutex object must not be initialized via memset or copying * - task may not exit with mutex held * - memory areas where held locks reside must not be freed * - held mutexes must not be reinitialized * - mutexes may not be used in hardware or software interrupt * contexts such as tasklets and timers * * These semantics are fully enforced when DEBUG_MUTEXES is * enabled. Furthermore, besides enforcing the above rules, the mutex * debugging code also implements a number of additional features * that make lock debugging easier and faster: * * - uses symbolic names of mutexes, whenever they are printed in debug output * - point-of-acquire tracking, symbolic lookup of function names * - list of all locks held in the system, printout of them * - owner tracking * - detects self-recursing locks and prints out all relevant info * - detects multi-task circular deadlocks and prints out all affected * locks and tasks (and only those tasks) */ struct mutex { atomic_long_t owner; raw_spinlock_t wait_lock; #ifdef CONFIG_MUTEX_SPIN_ON_OWNER struct optimistic_spin_queue osq; /* Spinner MCS lock */ #endif struct list_head wait_list; #ifdef CONFIG_DEBUG_MUTEXES void *magic; #endif #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif }; fast path mid path slow path