Description
Given an array of positive integers nums
and a positive integer target
, return the minimal length of a
subarray
whose sum is greater than or equal to target
. If there is no such subarray, return 0
instead.
Example 1:
Input: target = 7, nums = [2,3,1,2,4,3] Output: 2 Explanation: The subarray [4,3] has the minimal length under the problem constraint.
Example 2:
Input: target = 4, nums = [1,4,4] Output: 1
Example 3:
Input: target = 11, nums = [1,1,1,1,1,1,1,1] Output: 0
Constraints:
1 <= target <= 109
1 <= nums.length <= 105
1 <= nums[i] <= 104
Follow up: If you have figured out the O(n)
solution, try coding another solution of which the time complexity is O(n log(n))
.
Code
Time Complexity: , Space Complexity:
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int j = 0;
int res = INT_MAX;
int cur = 0;
for(int i = 0; i < nums.size(); i++) {
cur += nums[i];
while(cur >= target) {
res = min(res, i - j + 1);
cur -= nums[j++];
}
}
return res == INT_MAX ? 0 : res;
}
};
class Solution {
public:
int minSubArrayLen(int target, vector<int>& nums) {
int res = INT_MAX;
int n = nums.size();
int r = 0;
int sum = 0;
for(int l = 0; l < n; l++) {
while(r < n && sum < target) {
sum += nums[r];
r++;
};
if(sum >= target)
res = min(res, r - l);
sum -= nums[l];
}
if(res == INT_MAX) return 0;
return res;
}
};