Description
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
Code
Kadane’s Algorithm
知道如何解 Maximum Subarray的話,這題只是 circular 變形版。
解題關鍵在於:
因此:
答案就是 max(maxSum, total - minSum)
Corner case
Just one to pay attention:
If all numbers are negative, maxSum = max(A)
and minSum = sum(A)
.
In this case, max(maxSum, total - minSum) = 0
, which means the sum of an empty subarray.
According to the deacription, We need to return the max(A)
, instead of sum of am empty subarray.
So we return the maxSum
to handle this corner case.
NOTE
本題不能像 House Robber 到 House Robber II 一樣,做兩遍 DP 就可以得到最佳解,因為就像上圖中標示的 case 2,max subarray 可能會取頭取尾不包含中間。
也不能像 Next Greater Element II 一樣 circular 的做(那裏可以是因為沒有累加的 DP 關係,只是單純求 next greater),因為 DP 關係會被破壞,例如以下的 code。
考慮 [5, -3, 5]
,展開變成 [5, -3, 5, 5, -3 ,5]
,我們沒辦法在做到 index 3 時知道目前的 DP 是否包含原本的第一個 5,因此有可能會重複計算。