Description
Given an array of non-negative integers arr
, you are initially positioned at start
index of the array. When you are at index i
, you can jump to i + arr[i]
or i - arr[i]
, check if you can reach to any index with value 0.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [4,2,3,0,3,1,2], start = 5 Output: true Explanation: All possible ways to reach at index 3 with value 0 are: index 5 → index 4 → index 1 → index 3 index 5 → index 6 → index 4 → index 1 → index 3
Example 2:
Input: arr = [4,2,3,0,3,1,2], start = 0 Output: true Explanation: One possible way to reach at index 3 with value 0 is: index 0 → index 4 → index 1 → index 3
Example 3:
Input: arr = [3,0,2,1,2], start = 2 Output: false Explanation: There is no way to reach at index 1 with value 0.
Constraints:
1 <= arr.length <= 5 * 104
0 <= arr[i] < arr.length
0 <= start < arr.length
Code
我原本自己寫的 DFS,需要用 的 visited
。
class Solution {
public:
bool canReach(vector<int>& arr, int start) {
int n = arr.size();
vector<int> visited(n, 0);
return dfs(start, arr, visited);
}
bool dfs(int index, vector<int>& arr, vector<int>& visited) {
if(visited[index]) return false;
visited[index] = 1;
if(arr[index] == 0) {
return true;
}
bool left = false;
bool right = false;
if(index - arr[index] >= 0) left = dfs(index - arr[index], arr, visited);
if(index + arr[index] < arr.size()) right = dfs(index + arr[index], arr, visited);
return left || right;
}
};
lee125
大神的解答,將 traverse 過的 element 的值設為負值,就不需要 visited
來檢查,且要找的值 0
就可以由 !(A[i] = -A[i]
檢查出來。
看完只能說,人的智商還是有差。
class Solution {
public:
bool canReach(vector<int>& A, int i) {
return 0 <= i && i < A.size() && A[i] >= 0 && (!(A[i] = -A[i]) || canReach(A, i + A[i]) || canReach(A, i - A[i]));
}
};