Code
Time Complexity: , Space Complexity:
DP - 1
Follows the tutorial of Most consistent ways of dealing with the series of stock problems, we get the following solution.
Note that index 0 is the day before the prices of stocks starts, so index 1 corresponds index 0 of the prices array.
class Solution {
public:
int maxProfit(vector<int>& prices) {
int days = prices.size();
int trades = 1;
int T[days + 1][trades + 1][2];
// On day 0, no way ending up with stock in hand
for(int i = 0; i < trades + 1; i++) {
T[0][i][0] = 0;
T[0][i][1] = -1e4;
}
// no trade, no way ending up with stock in hand
for(int i = 0; i < days + 1; i++) {
T[i][0][0] = 0;
T[i][0][1] = -1e4;
}
for(int k = 1; k < trades + 1; k++) {
for(int i = 1; i < days + 1; i++) {
T[i][k][0] = max(T[i - 1][k][0], T[i - 1][k][1] + prices[i - 1]);
T[i][k][1] = max(T[i - 1][k][1], T[i - 1][k - 1][0] - prices[i - 1]);
}
}
return T[days][trades][0];
}
};
// i = 0, 1, 2, ..., n;
// 0 -> day 0, i = 0;
// prices = [7, 1, 5, 3, 6 ,4], i = 1, 2, ..., 6
// T[i][k][0]: i-th day, with k transactions complete, with 0 stock in hand
// T[i][k][1]: i-th day, with k transactions complete, with 1 stock in hand
// Recurrence Relationship
// i = 1, 2, ..., n;
// T[i][k][0] = max(T[i - 1][k][0], T[i - 1][k][1] + prices[i]);
// T[i][k][1] = max(T[i - 1][k][1], T[i - 1][k - 1][0] - prices[i]);
// Base cases:
// T[0][k][0] = 0, T[0][k][1] = -Infinity
// T[i][0][0] = 0, T[i][0][1] = -Infinity, for i = 1, 2, ..., n
DP - 2
class Solution {
public:
int maxProfit(vector<int>& prices) {
int buy = prices[0];
int sell = 0;
for(int p: prices) {
buy = min(p, buy);
sell = max(p - buy, sell);
}
return sell;
}
};
Kadane’s Algorithm
由 Kadane Algorithm(Maximum Subarray Problem) 可寫成以下版本(注意因為題目給的是當日的 price,因此在計算時要自己換算成兩日之間的差):
類似題目 : Maximum Subarray
class Solution {
public:
int maxProfit(vector<int>& prices) {
int curSum = 0;
int maxSum = 0;
for(int i = 1; i < prices.size(); i++) {
curSum = max(curSum + (prices[i] - prices[i-1]), prices[i] - prices[i-1]);
maxSum = max(maxSum, curSum);
}
return maxSum;
}
};