Description
You are given a 0-indexed integer array piles
, where piles[i]
represents the number of stones in the ith
pile, and an integer k
. You should apply the following operation exactly k
times:
- Choose any
piles[i]
and removefloor(piles[i] / 2)
stones from it.
Notice that you can apply the operation on the same pile more than once.
Return the minimum possible total number of stones remaining after applying the k
operations.
floor(x)
is the greatest integer that is smaller than or equal to x
(i.e., rounds x
down).
Example 1:
Input: piles = [5,4,9], k = 2 Output: 12 Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [5,4,5].
- Apply the operation on pile 0. The resulting piles are [3,4,5]. The total number of stones in [3,4,5] is 12.
Example 2:
Input: piles = [4,3,6,7], k = 3 Output: 12 Explanation: Steps of a possible scenario are:
- Apply the operation on pile 2. The resulting piles are [4,3,3,7].
- Apply the operation on pile 3. The resulting piles are [4,3,3,4].
- Apply the operation on pile 0. The resulting piles are [2,3,3,4]. The total number of stones in [2,3,3,4] is 12.
Constraints:
1 <= piles.length <= 105
1 <= piles[i] <= 104
1 <= k <= 105
Code
Time Complexity: , Space Complexity:
class Solution {
public:
int minStoneSum(vector<int>& piles, int k) {
priority_queue<int> max_heap;
int total = 0;
for(auto& p: piles) {
max_heap.push(p);
total += p;
}
for(int i = 0; i < k; i++) {
auto n = max_heap.top();
max_heap.pop();
total -= n / 2;
max_heap.push(n - n / 2);
}
return total;
}
};