You are given an integer array nums
of length n
, and an integer array queries
of length m
.
Return an array answer
of length m
where answer[i]
is the maximum size of a subsequence that you can take from nums
such that the sum of its elements is less than or equal to queries[i]
.
A subsequence is an array that can be derived from another array by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: nums = [4,5,2,1], queries = [3,10,21] Output: [2,3,4] Explanation: We answer the queries as follows:
- The subsequence [2,1] has a sum less than or equal to 3. It can be proven that 2 is the maximum size of such a subsequence, so answer[0] = 2.
- The subsequence [4,5,1] has a sum less than or equal to 10. It can be proven that 3 is the maximum size of such a subsequence, so answer[1] = 3.
- The subsequence [4,5,2,1] has a sum less than or equal to 21. It can be proven that 4 is the maximum size of such a subsequence, so answer[2] = 4.
Example 2:
Input: nums = [2,3,4,5], queries = [1] Output: [0] Explanation: The empty subsequence is the only subsequence that has a sum less than or equal to 1, so answer[0] = 0.
Constraints:
n == nums.length
m == queries.length
1 <= n, m <= 1000
1 <= nums[i], queries[i] <= 106
Code
注意:subsequence 和 subarray 不一樣!subsequence 不需要是連續的。因為是 subsequence 所以可以直接 sort nums
。
有用到 Search Insert Position 去找 query 該被插入的位置(index 即是題目所求之最大覆蓋長度)。
class Solution {
public:
vector<int> answerQueries(vector<int>& nums, vector<int>& queries) {
int qSize = queries.size();
vector<int> answer(qSize, 0);
sort(nums.begin(), nums.end());
for(int i = 1; i < nums.size(); i++) {
nums[i] += nums[i-1];
}
for(int i = 0; i < queries.size(); i++) {
answer[i] = find(nums, queries[i]);
}
return answer;
}
int find(vector<int> &nums, int query) {
int l = 0, r = nums.size();
while(l < r) {
int mid = l + (r - l) / 2;
if (nums[mid] > query) r = mid;
else l = mid + 1;
}
return l;
}
};
find
函式可以用 std::upper_bound
來代替(return 大於指定搜尋元素之 index)
class Solution {
public:
vector<int> answerQueries(vector<int>& nums, vector<int>& queries) {
int qSize = queries.size();
vector<int> answer(qSize, 0);
sort(nums.begin(), nums.end());
for(int i = 1; i < nums.size(); i++) {
nums[i] += nums[i-1];
}
for(int i = 0; i < queries.size(); i++) {
answer[i] = upper_bound(nums.begin(), nums.end(), queries[i]) - nums.begin();
}
return answer;
}
};
Sliding Window
比較慢的解法。
class Solution {
public:
vector<int> answerQueries(vector<int>& nums, vector<int>& queries) {
sort(nums.begin(), nums.end());
int n = queries.size();
vector<int> res(n, 0);
for(int k = 0; k < queries.size(); k++) {
int i = 0;
int curSum = 0;
for(int j = 0; j < nums.size(); j++) {
curSum += nums[j];
while(curSum > queries[k]) {
curSum -= nums[i];
i++;
}
if(curSum <= queries[k]) {
res[k] = max(res[k], j - i + 1);
}
}
}
return res;
}
};