Description

Given the root of a binary tree, return the maximum width of the given tree.

The maximum width of a tree is the maximum width among all levels.

The width of one level is defined as the length between the end-nodes (the leftmost and rightmost non-null nodes), where the null nodes between the end-nodes that would be present in a complete binary tree extending down to that level are also counted into the length calculation.

It is guaranteed that the answer will in the range of a 32-bit signed integer.

Example 1:

Input: root = [1,3,2,5,3,null,9] Output: 4 Explanation: The maximum width exists in the third level with length 4 (5,3,null,9).

Example 2:

Input: root = [1,3,2,5,null,null,9,6,null,7] Output: 7 Explanation: The maximum width exists in the fourth level with length 7 (6,null,null,null,null,null,7).

Example 3:

Input: root = [1,3,2,5] Output: 2 Explanation: The maximum width exists in the second level with length 2 (3,2).

Constraints:

  • The number of nodes in the tree is in the range [1, 3000].
  • -100 <= Node.val <= 100

Code

Level Order Traversal

比較每一層的 index 的最大和最小,因為 index 每隔一層就會是兩倍(2i + 1, 2i + 2)因此做法需要用到 unsigned long long,較難 handle 很深的 test case。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int widthOfBinaryTree(TreeNode* root) {
        queue<pair<TreeNode*, unsigned long long>> q;
        q.push({root, 0});
 
        int maxWidth = 0;
        while(!q.empty()) {
            int levelSize = q.size();
            unsigned long long levelMinIndex = ULLONG_MAX;
            unsigned long long levelMaxIndex = 0;
            for(int i = 0; i < levelSize; i++) {
                auto node = q.front().first;
                auto index = q.front().second;
                levelMinIndex = min(levelMinIndex, index);
                levelMaxIndex = max(levelMaxIndex, index);
                q.pop();
                if(node->left) q.push({node->left, 2*index + 1});
                if(node->right) q.push({node->right, 2*index + 2});
            }
            maxWidth = max(maxWidth, (int)(levelMaxIndex - levelMinIndex + 1));
        }
 
 
        return maxWidth;
    }
};

因此我們需要想辦法避免 interger overflow 這件事情。

關鍵在於將每一層的開頭的 node 的 index 都設為 0:int index = q.front().second - start;

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int widthOfBinaryTree(TreeNode* root) {
        queue<pair<TreeNode*, int>> q;
        q.push({root, 0});
 
        int maxWidth = 0;
        while(!q.empty()) {
            int levelSize = q.size();
            int start = q.front().second;
            int end = q.back().second;
            maxWidth = max(maxWidth, end - start + 1);
 
            for(int i = 0; i < levelSize; i++) {
                auto node = q.front().first;
                int index = q.front().second - start;
 
                q.pop();
                if(node->left) q.push({node->left, (long long) 2*index + 1});
                if(node->right) q.push({node->right, (long long) 2*index + 2});
            }
        }
 
 
        return maxWidth;
    }
};

Source