Description
You are given an m x n
grid
where each cell can have one of three values:
0
representing an empty cell,1
representing a fresh orange, or2
representing a rotten orange.
Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1
.
Example 1:
Input: grid = [[2,1,1],[1,1,0],[0,1,1]] Output: 4
Example 2:
Input: grid = [[2,1,1],[0,1,1],[1,0,1]] Output: -1 Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: grid = 0,2 Output: 0 Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j]
is0
,1
, or2
.
Code
similar to Flood Fill,因為要求 minimum minutes,因此要使用 BFS,要思考的點在於,若有很多個 rotten oranges,要讓他們同時開始感染其他健康的 oranges,因為 BFS 是一個 level 一個 level 往下做,因此所有 initial rotten oranges 都會在 level 0。
注意 vector<int> dir = {-1, 0, 1, 0, -1};
的使用。
注意一開始時設 ans = -1
。