Description
You are given an m x n
grid
where each cell can have one of three values:
0
representing an empty cell,1
representing a fresh orange, or2
representing a rotten orange.
Every minute, any fresh orange that is 4-directionally adjacent to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1
.
Example 1:
Input: grid = [[2,1,1],[1,1,0],[0,1,1]] Output: 4
Example 2:
Input: grid = [[2,1,1],[0,1,1],[1,0,1]] Output: -1 Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Example 3:
Input: grid = 0,2 Output: 0 Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
grid[i][j]
is0
,1
, or2
.
Code
similar to Flood Fill,因為要求 minimum minutes,因此要使用 BFS,要思考的點在於,若有很多個 rotten oranges,要讓他們同時開始感染其他健康的 oranges,因為 BFS 是一個 level 一個 level 往下做,因此所有 initial rotten oranges 都會在 level 0。
注意 vector<int> dir = {-1, 0, 1, 0, -1};
的使用。
注意一開始時設 ans = -1
。
class Solution {
public:
int orangesRotting(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
queue<pair<int, int>> q;
int fresh = 0;
for(int i = 0; i < m; i++) {
for(int j = 0; j < n; j++) {
if(grid[i][j] == 2) q.push({i, j});
if(grid[i][j] == 1) fresh++;
}
}
vector<int> dir = {-1, 0, 1, 0, -1};
int ans = -1;
while(!q.empty()) {
int s = q.size();
while(s--) {
auto node = q.front();
q.pop();
for(int i = 0; i < 4; i++) {
int x = node.first + dir[i];
int y = node.second + dir[i+1];
if(x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1) {
grid[x][y] = 2;
fresh--;
q.push({x, y});
}
}
}
ans++;
}
if(fresh) return -1;
if(ans == -1) return 0;
return ans;
}
};