Description
Given two integer arrays inorder
and postorder
where inorder
is the inorder traversal of a binary tree and postorder
is the postorder traversal of the same tree, construct and return the binary tree.
Example 1:
Input: inorder = [9,3,15,20,7], postorder = [9,15,7,20,3] Output: [3,9,20,null,null,15,7]
Example 2:
Input: inorder = [-1], postorder = [-1] Output: [-1]
Constraints:
1 <= inorder.length <= 3000
postorder.length == inorder.length
-3000 <= inorder[i], postorder[i] <= 3000
inorder
andpostorder
consist of unique values.- Each value of
postorder
also appears ininorder
. inorder
is guaranteed to be the inorder traversal of the tree.postorder
is guaranteed to be the postorder traversal of the tree.
Code
同 Construct Binary Tree from Preorder and Inorder Traversal。
Trick:postorder (LRN → NRL)反過來就類似 preorder(NLR)。這技巧在 N-ary Tree Postorder Traversal 中用過。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
int rootIdx = 0;
// LRN -> NRL, simliar to preorder
reverse(postorder.begin(), postorder.end());
return build(postorder, inorder, rootIdx, 0, inorder.size()-1);
}
TreeNode* build(vector<int>& postorder, vector<int>& inorder, int& rootIdx, int left, int right) {
if (left > right) return NULL;
int pivot = left; // find the root from inorder
while(inorder[pivot] != postorder[rootIdx]) pivot++;
rootIdx++;
TreeNode* newNode = new TreeNode(inorder[pivot]);
newNode->right = build(postorder, inorder, rootIdx, pivot+1, right);
newNode->left = build(postorder, inorder, rootIdx, left, pivot-1);
return newNode;
}
};