Description
Implement pow(x, n), which calculates x
raised to the power n
(i.e., xn
).
Example 1:
Input: x = 2.00000, n = 10 Output: 1024.00000
Example 2:
Input: x = 2.10000, n = 3 Output: 9.26100
Example 3:
Input: x = 2.00000, n = -2 Output: 0.25000 Explanation: 2-2 = 1/22 = 1/4 = 0.25
Constraints:
-100.0 < x < 100.0
-231 <= n <= 231-1
n
is an integer.-104 <= xn <= 104
Code
Brute Force (TLE)
Multiplications
class Solution {
public:
double myPow(double x, int n) {
double res = 1;
if(n == 0) return res;
if(n < 0) {
for(int i = 0; i < -n; i++) {
res /= x;
}
} else {
for(int i = 0; i < n; i++) {
res *= x;
}
}
return res;
}
};
Recursion
if(n < 0)
return 1/x * myPow(1/x, -(n + 1));
是為了避免 x =1.00000, n =-2147483648 這種 case 會導致 integer overflow。
class Solution {
public:
double myPow(double x, int n) {
if(n < 0)
return 1/x * myPow(1/x, -(n + 1));
if(n == 0)
return 1;
if(n == 1)
return x;
double res = myPow(x, n / 2);
if(n % 2)
return res * res * x;
return res * res;
}
};
Log
Multiplications
例如 n = 11
,寫成二進位為 1011
,我們就不斷地 right shift,用 if(n & 1)
檢查 right most bit 是否為 1
來決定是否要乘上此時的 x
。
class Solution {
public:
double myPow(double x, int n) {
double res = 1;
if(n == 0) return res;
if(n < 0) {
x = 1 / x;
}
while(n) {
if(n & 1) {
res *= x;
}
x *= x;
n /= 2;
}
return res;
}
};