Description
You are given an array of positive integers price
where price[i]
denotes the price of the ith
candy and a positive integer k
.
The store sells baskets of k
distinct candies. The tastiness of a candy basket is the smallest absolute difference of the prices of any two candies in the basket.
Return the maximum tastiness of a candy basket.
Example 1:
Input: price = [13,5,1,8,21,2], k = 3 Output: 8 Explanation: Choose the candies with the prices [13,5,21]. The tastiness of the candy basket is: min(|13 - 5|, |13 - 21|, |5 - 21|) = min(8, 8, 16) = 8. It can be proven that 8 is the maximum tastiness that can be achieved.
Example 2:
Input: price = [1,3,1], k = 2 Output: 2 Explanation: Choose the candies with the prices [1,3]. The tastiness of the candy basket is: min(|1 - 3|) = min(2) = 2. It can be proven that 2 is the maximum tastiness that can be achieved.
Example 3:
Input: price = [7,7,7,7], k = 2 Output: 0 Explanation: Choosing any two distinct candies from the candies we have will result in a tastiness of 0.
Constraints:
2 <= k <= price.length <= 105
1 <= price[i] <= 109
Code
基本概念:Binary Search 101
Time Complexity: , Space Complexity:
check
使用 greedy,因為 price 為 sorted ,所以從第一個 element 開始找,如果說有更後面的元素也可以當作起點,那第一個元素一定更可以當作起點。
以 1, 2, 5, 8, 13, 21, gap = 8
為例,5, 13, 21
是一組解,但是 1, 13, 21
也是。
class Solution {
public:
int maximumTastiness(vector<int>& price, int k) {
sort(price.begin(), price.end());
int l = 0;
int r = 1e9 - 1;
while(l < r) {
int m = l + (r - l) / 2;
if(check(m, price, k)) {
l = m + 1;
} else {
r = m;
}
}
return check(l, price, k) ? l : l - 1;
}
bool check(int gap, vector<int>& price, int k) {
int prev = price[0];
k--;
for(int i = 1; i < price.size(); i++) {
if(price[i] - prev >= gap) {
prev = price[i];
k--;
}
}
return k <= 0;
}
};