Description
There is an integer array nums
sorted in non-decreasing order (not necessarily with distinct values).
Before being passed to your function, nums
is rotated at an unknown pivot index k
(0 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,4,4,5,6,6,7]
might be rotated at pivot index 5
and become [4,5,6,6,7,0,1,2,4,4]
.
Given the array nums
after the rotation and an integer target
, return true
if target
is in nums
, or false
if it is not in nums
.
You must decrease the overall operation steps as much as possible.
Example 1:
Input: nums = [2,5,6,0,0,1,2], target = 0 Output: true
Example 2:
Input: nums = [2,5,6,0,0,1,2], target = 3 Output: false
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
is guaranteed to be rotated at some pivot.-104 <= target <= 104
Follow up: This problem is similar to Search in Rotated Sorted Array, but nums
may contain duplicates. Would this affect the runtime complexity? How and why?
Code
Time Complexity: , Space Complexity:
和 Search in Rotated Sorted Array 一樣,只是 duplicate,因此會有
else if(nums[m] == nums[r]) {
r--;
}
的狀況。和 Find Minimum in Rotated Sorted Array II 裡用到的技巧相同。
class Solution {
public:
bool search(vector<int>& nums, int target) {
int n = nums.size();
int l = 0, r = n - 1;
while(l < r) {
int m = l + (r - l) / 2;
if(nums[m] > nums[r]) {
// the left half is sorted
if(target < nums[l] || target > nums[m])
l = m + 1;
else
r = m;
} else if(nums[m] < nums[r]) {
// the right half is sorted
if(target > nums[m] && target <= nums[r])
l = m + 1;
else
r = m;
} else if(nums[m] == nums[r]) {
r--;
}
}
return nums[l] == target;
}
};