Description
You are given an array of intervals
, where intervals[i] = [starti, endi]
and each starti
is unique.
The right interval for an interval i
is an interval j
such that startj >= endi
and startj
is minimized. Note that i
may equal j
.
Return an array of right interval indices for each interval i
. If no right interval exists for interval i
, then put -1
at index i
.
Example 1:
Input: intervals = 1,2 Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: intervals = [[3,4],[2,3],[1,2]] Output: [-1,0,1] Explanation: There is no right interval for [3,4]. The right interval for [2,3] is [3,4] since start0 = 3 is the smallest start that is >= end1 = 3. The right interval for [1,2] is [2,3] since start1 = 2 is the smallest start that is >= end2 = 2.
Example 3:
Input: intervals = [[1,4],[2,3],[3,4]] Output: [-1,2,-1] Explanation: There is no right interval for [1,4] and [3,4]. The right interval for [2,3] is [3,4] since start2 = 3 is the smallest start that is >= end1 = 3.
Constraints:
1 <= intervals.length <= 2 * 104
intervals[i].length == 2
-106 <= starti <= endi <= 106
- The start point of each interval is unique.
Code
Using Vector
Time Complexity: , Space Complexity:
class Solution {
public:
vector<int> findRightInterval(vector<vector<int>>& intervals) {
// map of the start_i to index i, since
// start_i is unique
unordered_map<int, int> mp;
for(int i = 0; i < intervals.size(); i++) {
mp[intervals[i][0]] = i;
}
sort(intervals.begin(), intervals.end());
int n = intervals.size();
vector<int> res(n, 0);
for(int i = 0; i < n; i++) {
int l = i, r = n - 1;
int start_i = intervals[i][0];
int end_i = intervals[i][1];
// find end_i <= start_j
while(l < r) {
int m = l + (r - l) / 2;
int start_j = intervals[m][0];
if(start_j < end_i) {
l = m + 1;
} else {
// start_j >= end_j
r = m;
}
}
res[mp[start_i]] = intervals[l][0] >= end_i ? mp[intervals[l][0]] : -1;
}
return res;
}
};
Using Map
Time Complexity: , Space Complexity:
用 Map 就等於使用 Vector 加上 unordered_map 去紀錄 index。共通點是都有使用到 lower_bound。
class Solution {
public:
vector<int> findRightInterval(vector<vector<int>>& intervals) {
int n = intervals.size();
vector<int> res(n);
map<int, int> mp; // <start_i, index>
for(int i = 0; i < intervals.size(); i++) {
mp[intervals[i][0]] = i;
}
for(int i = 0; i < intervals.size(); i++) {
// find start_i >= end_j(intervals[i][1])
auto iter = mp.lower_bound(intervals[i][1]);
res[i] = iter == mp.end() ? -1 : iter->second;
}
return res;
}
};