Description
Given a string s
, find the longest palindromic subsequence’s length in s
.
A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: s = “bbbab” Output: 4 Explanation: One possible longest palindromic subsequence is “bbbb”.
Example 2:
Input: s = “cbbd” Output: 2 Explanation: One possible longest palindromic subsequence is “bb”.
Constraints:
1 <= s.length <= 1000
s
consists only of lowercase English letters.
Code
Brute Force Recursion
, Time Limit Exceed.
class Solution {
public:
int longestPalindromeSubseq(string s) {
int l = 0, r = s.length() - 1;
return lps(l, r, s);
}
int lps(int left, int right, string& s) {
if(left == right) return 1;
if(left > right) return 0;
if(s[left] == s[right]) {
return lps(left + 1, right - 1, s) + 2;
} else {
return max(lps(left+1, right, s), lps(left, right - 1, s));
}
}
};
With Memo
, pass all tests
class Solution {
public:
int longestPalindromeSubseq(string s) {
int l = 0, r = s.length() - 1, n = s.length();
vector<vector<int>> dp(n, vector<int>(n, NULL));
return lps(l, r, s, dp);
}
int lps(int left, int right, string& s, vector<vector<int>>& dp) {
if(dp[left][right] != NULL) return dp[left][right];
if(left == right) {
return dp[left][right] = 1;
}
if(left > right) {
return dp[left][right] = 0;
}
if(s[left] == s[right]) {
return dp[left][right] = lps(left + 1, right - 1, s, dp) + 2;
} else {
return dp[left][right] = max(lps(left+1, right, s, dp), lps(left, right - 1, s, dp));
}
}
};
DP
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.length();
vector<vector<int>> dp(n, vector<int>(n, 0));
for(int i = 0; i < n; i++) {
dp[i][i] = 1;
}
for(int d = 1; d < n; d++) {
for(int i = 0; i < n - d; i++) {
int j = i + d;
dp[i][j] = s[i] == s[j] ? dp[i + 1][j - 1] + 2 : max(dp[i+1][j], dp[i][j-1]);
}
}
return dp[0][n-1];
}
};