Description

Given an array of integers cost and an integer target, return the maximum integer you can paint under the following rules:

  • The cost of painting a digit (i + 1) is given by cost[i] (0-indexed).
  • The total cost used must be equal to target.
  • The integer does not have 0 digits.

Since the answer may be very large, return it as a string. If there is no way to paint any integer given the condition, return "0".

Example 1:

Input: cost = [4,3,2,5,6,7,2,5,5], target = 9 Output: “7772” Explanation: The cost to paint the digit ‘7’ is 2, and the digit ‘2’ is 3. Then cost(“7772”) = 2*3+ 3*1 = 9. You could also paint “977”, but “7772” is the largest number. Digit cost 1 4 2 3 3 2 4 5 5 6 6 7 7 2 8 5 9 5

Example 2:

Input: cost = [7,6,5,5,5,6,8,7,8], target = 12 Output: “85” Explanation: The cost to paint the digit ‘8’ is 7, and the digit ‘5’ is 5. Then cost(“85”) = 7 + 5 = 12.

Example 3:

Input: cost = [2,4,6,2,4,6,4,4,4], target = 5 Output: “0” Explanation: It is impossible to paint any integer with total cost equal to target.

Constraints:

  • cost.length == 9
  • 1 <= cost[i], target <= 5000

Code

DP

這題和 Coin Change II 類似,是 unbounded knapsack 的題目。DP 關係式為dp[i][j] = dp[i - 1][j] + (j >= cost[i - 1] ? dp[i][j - cost[i - 1]] : 0);

只是這題是 string,要注意 string 的相關操作。

另外,注意 base case 的設定,設為 "",而 DP table 的初始值,設為 "0",且在 for loop 中使用if(dp[i][j - cost[i - 1]] == "0") continue;,因為這題的 dp[i][j] 代表使用 index 0 ~ i 的 digit 組成 cost 剛剛好j 的 largest number。

Time Complexity: , Space Complexity:

class Solution {
    inline bool isGreaterThan(string &a, string &b) {
        return a.size() != b.size() ? a.size() > b.size() : a > b;
    }
public:
    string largestNumber(vector<int>& cost, int target) {
        int n = cost.size();
        vector<vector<string>> dp(n + 1, vector<string>(target + 1, "0")); // "0" means impossible
 
        // base case
        for(int i = 0; i < n + 1; i++) {
            dp[i][0] = "";
        }
 
        for(int i = 1; i < n + 1; i++) {
            for(int j = 1; j < target + 1; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j >= cost[i - 1]) {
                    if(dp[i][j - cost[i - 1]] == "0") continue;
                    auto s = string(1, '0' + i) + dp[i][j - cost[i - 1]];
                    if (isGreaterThan(s, dp[i][j])) dp[i][j] = s;
                }
            }
        }
 
        return dp[n][target];
    }
};

DP - Optimized

Time Complexity: , Space Complexity:

觀察 dp[i][j] 只和dp[i - 1][j]dp[i][j - cost[i - 1]] 有關係,因此可以只用 1D dp table 。

class Solution {
    inline bool isGreaterThan(string &a, string &b) {
        return a.size() != b.size() ? a.size() > b.size() : a > b;
    }
public:
    string largestNumber(vector<int>& cost, int target) {
        int n = cost.size();
        vector<string> dp(target + 1, "0"); // "0" means impossible
 
        // base case
        dp[0] = "";
 
        for(int i = 1; i < n + 1; i++) {
            for(int j = 1; j < target + 1; j++) {
                if(j >= cost[i - 1]) {
                    if(dp[j - cost[i - 1]] == "0") continue;
                    auto s = string(1, '0' + i) + dp[j - cost[i - 1]];
                    if (isGreaterThan(s, dp[j])) dp[j] = s;
                }
            }
        }
 
        return dp[target];
    }
};

Source