Description
Given an array nums
of n
integers, return an array of all the unique quadruplets [nums[a], nums[b], nums[c], nums[d]]
such that:
0 <= a, b, c, d < n
a
,b
,c
, andd
are distinct.nums[a] + nums[b] + nums[c] + nums[d] == target
You may return the answer in any order.
Example 1:
Input: nums = [1,0,-1,0,-2,2], target = 0 Output: [[-2,-1,1,2],[-2,0,0,2],[-1,0,0,1]]
Example 2:
Input: nums = [2,2,2,2,2], target = 8 Output: 2,2,2,2
Constraints:
1 <= nums.length <= 200
-109 <= nums[i] <= 109
-109 <= target <= 109
Code
邏輯和 3Sum 一樣,只是在外面多套上一層 for loop,以及因為 Constraints 所以使用 long
而非 int
。
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(nums.begin(), nums.end());
vector<vector<int>> answer;
for(int i = 0; i < nums.size(); i++) {
long outerTarget = target - nums[i];
// 3Sum with sum equals outerTarget
for(int j = i + 1; j < nums.size(); j++) {
long innerTarger = outerTarget - nums[j];
int left = j + 1;
int right = nums.size() - 1;
while(left < right) {
if(nums[left] + nums[right] > innerTarger) right--;
else if (nums[left] + nums[right] < innerTarger) left++;
else {
vector<int> fourSum = {nums[i], nums[j], nums[left], nums[right]};
answer.push_back(fourSum);
// Processing duplicates of Number 2
// Rolling the front pointer to the next different number forwards
while (left < right && nums[left] == fourSum[2]) left++;
// Processing duplicates of Number 3
// Rolling the back pointer to the next different number backwards
while (left < right && nums[right] == fourSum[3]) right--;
}
}
// skip duplicate of the first one
while(j + 1 < nums.size() && nums[j] == nums[j+1]) j++;
}
// skip duplicate of the first one
while(i + 1 < nums.size() && nums[i] == nums[i+1]) i++;
}
return answer;
}
};
可以使用 recursion 以 Two Sum 為基礎 scale 到 kSum 問題,同時配合 backtracking 的技巧,讓 path
先 push_back
再 pop_back
。
要注意在 dfs 的 function declaration 中 long target
,去避免 integer overflow。
class Solution {
vector<vector<int>> res;
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
sort(nums.begin(), nums.end());
vector<int> path;
kSum(4, nums, path, 0, (int)nums.size() - 1, target);
return res;
}
void kSum(int k, vector<int>& nums, vector<int>& cur, int l, int r, long target) {
if(k == 2) {
while(l < r) {
if(nums[l] + nums[r] > target) r--;
else if(nums[l] + nums[r] < target) l++;
else {
cur.push_back(nums[l]);
cur.push_back(nums[r]);
res.push_back(cur);
cur.pop_back();
cur.pop_back();
while(l + 1 < r && nums[l] == nums[l + 1]) l++;
l++;
r--;
}
}
} else {
while(l < r) {
cur.push_back(nums[l]);
kSum(k - 1, nums, cur, l + 1, r, target - nums[l]);
cur.pop_back();
while(l + 1 < r && nums[l] == nums[l + 1]) l++;
l++;
}
}
}
};