Description

Given an integer array nums and an integer k, return the maximum sum of a non-empty subsequence of that array such that for every two consecutive integers in the subsequence, nums[i] and nums[j], where i < j, the condition j - i <= k is satisfied.

A subsequence of an array is obtained by deleting some number of elements (can be zero) from the array, leaving the remaining elements in their original order.

Example 1:

Input: nums = [10,2,-10,5,20], k = 2 Output: 37 Explanation: The subsequence is [10, 2, 5, 20].

Example 2:

Input: nums = [-1,-2,-3], k = 1 Output: -1 Explanation: The subsequence must be non-empty, so we choose the largest number.

Example 3:

Input: nums = [10,-2,-10,-5,20], k = 2 Output: 23 Explanation: The subsequence is [10, -2, -5, 20].

Constraints:

  • 1 <= k <= nums.length <= 105
  • -104 <= nums[i] <= 104

Code

Monotonic Queue

Time Complexity: , Space Complexity:

關鍵在於:A[i] = max(0, A[i - k], A[i - k + 1], .., A[i - 1]) + A[i],因此我們要求的就是在滿足 j - i <= k 的 window 中的 max element,而如何求得我們已經在 Sliding Window Maximum 中學到了。

  • Base case: dp[0] = nums[0]
  • state transition: dp[i] = max(dp[i - k], dp[i-k+1], ..., dp[i - 1], 0) + x
    • NOTE that x can be a fresh start when all the previous dp are negative.

The Idea is straight-forward, we can maintain an non-increasing deque decrease that records the maximum value among dp[i - k], dp[i-k+1], ..., dp[i - 1]

class Solution {
public:
    int constrainedSubsetSum(vector<int>& nums, int k) {
        int n = nums.size();
        deque<int> d;
 
        vector<int> dp(n, 0);
        int max_sum = nums[0];
        dp[0] = nums[0];
 
        for (int i = 0; i < n; i++) {
            if (d.empty()) {
                // will run only for the first element
                d.push_back(i);
            } else {
                // Remove all outside window index
                while (!d.empty() && d.front() < i - k) {
                    d.pop_front();
                }
 
                // Update sum
                dp[i] = max(dp[d.front()] + nums[i], nums[i]);
                max_sum = max(max_sum, dp[i]);
 
                // Maintain decreasing deque of DP
                while (!d.empty() && dp[d.back()] <= dp[i]) {
                    d.pop_back();
                }
                d.push_back(i);
            }
        }
 
        return max_sum;
 
    }
};

Source